If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-750=0
a = 2; b = 10; c = -750;
Δ = b2-4ac
Δ = 102-4·2·(-750)
Δ = 6100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6100}=\sqrt{100*61}=\sqrt{100}*\sqrt{61}=10\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{61}}{2*2}=\frac{-10-10\sqrt{61}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{61}}{2*2}=\frac{-10+10\sqrt{61}}{4} $
| X+25x=50 | | (r+0.4)^3=0 | | X+25y+50=0 | | (-121(r-0.4))/((r+0.4)^3)=0 | | (-121(r-0.4))/(r+0.4)^3=0 | | 4x-8=x-10 | | 64=x-19 | | 71=45+x | | 71=45=x | | n*n+6n+9=25 | | 1.3x=1 | | k/1*5=3 | | 6x^2-540=0 | | (3.5x)x=12 | | 2x^2+16-10=0 | | X+x÷2+x÷4=99 | | 1/4n+3=1+3/4n | | 3-x=2(x-5)=5x-1 | | 1/3n+2=2/3n | | -5n+17=4n-10 | | 9n+6=3n+42 | | 9z+10=1-15+3z | | X+(1.65x)=2761905 | | T=6x5+7 | | 2^(x+1)-17.2^(x/2)+8=0 | | 2^x+1-17.2^x/2+8=0 | | 14/8+x=5 | | -7(8+5x=-476 | | 1.5x+3(2.4-x)=37.5-0.5x | | 5(4-x)=-25 | | -1/2y+4=1/10y+2/5 | | -26-3(x+2)=5x |